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ABSTRACT 

 

A growing body of discoveries in molecular signatures has revealed that volatile organic compounds 

(VOCs), the small molecules associated with an individual's odor and breath, can be monitored to reveal 

the identity and presence of a unique individual, as well their overall physiological status. Given the 

analysis requirements for differential VOC profiling via gas chromatography/mass spectrometry, our 

group has developed a novel informatics platform, Metabolite Differentiation and Discovery Lab 

(MeDDL). In its current version, MeDDL is a comprehensive tool for time-series spectral registration and 

alignment, visualization, comparative analysis, and machine learning to facilitate the efficient analysis of 

multiple, large-scale biomarker discovery studies. The MeDDL toolset can therefore identify a large 

differential subset of registered peaks, where their corresponding intensities can be used as features for 

classification. This initial screening of peaks yields results sets that are typically too large for 

incorporation into a portable, electronic nose based system in addition to including VOCs that are not 

amenable to classification; consequently, it is also important to identify an optimal subset of these peaks 

to increase classification accuracy and to decrease the cost of the final system. MeDDL's learning tools 

include a classifier similar to a K-nearest neighbor classifier used in conjunction with a genetic algorithm 

(GA) that simultaneously optimizes the classifier and subset of features. The GA uses ROC curves to 

produce classifiers having maximal area under their ROC curve. Experimental results on over a dozen 

recognition problems show many examples of classifiers and feature sets that produce perfect ROC 

curves. 

Keywords: machine learning, receiver operating characteristic, K-nearest neighbor, genetic algorithm, 

biomarker, differential profiling, gas chromatography, mass spectrometry, volatile organic compound 

 

 

1.0 INTRODUCTION 

 

Current liquid chromatography/mass spectrometry (LC/MS) and gas chromatography/mass spectrometry 

(GC/MS) systems typically consist of a system of specialized instrumentation with customized support 

software. This software is generally proprietary, being supplied by the instrument manufacturer and 

designed to facilitate user interaction with the analytical hardware. Most platform manufacturers also 

market add-on commercial software packages for the analysis of the results of GC and LC/MS 

experiments, which are generally designed to provide a very specific type of data analysis (i.e. proteomic 

or metabolomic) and cannot be readily modified or added to by the end-user. For larger metabolomic and 

volatile organic compound (VOC) biomarker discovery studies, such as the GC/MS based VOC profiling 

efforts initiated by our laboratory and collaborators, none of the software solutions reviewed
1-6

 prior to 
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development offered the ability to compare multiple time point and exposure groups, or handle data sets 

in significant sample numbers. This bottleneck in data handling initiated the described development and 

evolution of the Metabolite Differentiation and Discovery Lab (MeDDL) tool
7
, allowing us to 

differentiate metabolite and VOC profiles in multiple differential biomarker discovery studies and 

facilitated the ability to visualize collected data for a global view of an entire experiment while 

maintaining the ability to focus on individual compounds and spectra for subsequent identification. The 

latest version of MeDDL incorporates a variety of additional features, described below, which focus on 

expanding the GC/MS analysis capability  
 

*claude.grigsby@wpafb.af.mil; phone (937)938-3721; fax (937)656-6898; 

www.wpafb.af.mil/afrl/711HPW/ of the platform in support of VOC based biomarker research on-going 

in our laboratory. The goal of this work was to enhance the capability of the MeDDL tool for use in 

differential metabolite profiling through generation of a suite of logically driven filters and machine 

learning tools for feature down-selection, allowing for optimally targeted unknown compound 

identification and potential subsequent incorporation into sensor platforms.  
 

 

2.0 BACKGROUND / APPROACH 

 

2.1 Background 

 

Both small molecule and VOC based metabolite profiling are an attractive approach to the study of 

multivariate metabolic responses to such things as pathophysiological processes by which biological and 

chemical agents can cause perturbations in the concentrations and flux of endogenous metabolites 

involved in critical cellular pathways. Thus, cells and entire organisms respond to toxic insult or other 

stressors by altering their intra-and/or extra-cellular environment in an attempt to maintain a homeostatic 

intracellular environment, some of which translate to differences in measurable volatile compounds 

emitted. This metabolic alteration is expressed as a "fingerprint" of biochemical perturbations that may be 

characteristic of the type and target of a toxic insult or disease process. Additionally, if a significant 

number of trace molecules can be identified and monitored, the overall pattern produced may be more 

consistent and predictive than any single biomarker, which would prove of great value in the development 

of targeted sensing platforms. To illustrate our approach to these studies, we present the below urine 

based VOC comparison of the two parental strains of the BXD mouse model
8
, C57 and DBA. This 

described methodology is representative of our approach and is applicable to a wide range of VOC and 

small molecule based biomarker discovery applications such as human performance monitoring, odor 

based biometrics, medical diagnostics, and targeted materials detection. 
 

2.2 Peak Registration, Alignment, and Filtering 

 

The MeDDL platform is an freeware informatics package currently implemented in MATLAB v2011a 

(The MathWorks Inc., Natick, MA) that allows for registration of “peaks,” which are defined here as a 

single ion or measured mass/charge (m/z) at a given retention time, mass and chromatographic time 

alignment, and a suite of statistical and pattern recognition tools selected for biomarker screening studies. 

In brief, the MeDDL tool reads in lists of CDF (common data format) conversions of the raw LC/MS and 

GC/MS data files, registers peaks based on user-defined parameters in terms of mass sensitivity and 

accuracy thresholds as well as chromatographic reproducibility tailored to the performance of the 
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analytical platform, and performs alignment of the generated peak lists in both time and mass. Following 

the spectral registration and alignment previously described
7
, the data was analyzed using several of the 

principal analytical methodologies included in MeDDL: unsupervised clustering via principal component 

analysis
9
; differential down selection of peaks through combination of a set of logical filters; and 

utilization of machine learning based tools for significant VOC “feature” identification. 

 

MeDDL was originally created for the analysis of LC/MS data.  The ionization techniques generally 

employed for LC/MS are termed “soft” and impart low energy to eluting ions, resulting in fairly simple 

mass spectra: often comprised of just the ionized analyte, or “parent” ion.  Modifications to the original 

implementation of MeDDL were required to aid in the analysis of the more complex mass spectra in 

GC/MS resulting from the “hard ionization” induced by the electron impact (EI) fragmentation process in 

the mass spectrometer’s ion source.  A reductionist approach for this analysis was required for the 

efficient determination of changes observed between sample groups. To address this issue, we created a 

supplementary time-binning filter allowing the analyst to specify both a time window and lower bound 

threshold of peak intensities. The comparison then proceeds as follows: an averaged, composite image of 

each user-defined comparative group is generated (i.e. the surface obtained from samples comprising each 

comparative group); the most intense peak from all groups is evaluated across all aligned images using a 

0.1 minute window and 100,000 absolute (total ion count) threshold; once the comparison is completed, 

this “time slice” based upon the peak apex ± ½ of the specified time window is removed from further 

analysis and the next most intense set of peaks are compared. An additional filter applied in the 

differential analysis of groups in this study included a fold change filter limiting results to only those 

peaks which demonstrated at least 2 fold or greater change in intensity between strains. It must be noted 

that although the MeDDL tool contains a wide variety of implemented statistical filters for feature down-

selection, we limited their use to only the 2 filters listed to allow for optimal feature selection by the 

classifier. Once both of these filters were applied to the grouped, global data set, a Boolean "AND" was 

added to the resulting filtered peak sets to identify the logical intersection, an approach similar to that 

used in generation of a Venn diagram. These reduced data sets were then used for further classification 

described below.   
 

2.3 Classification 

 

The filtered, numerical data sets, or feature vectors, produced by the preprocessing described in the 

previous section must be used to perform classification on unknown samples for optimal results. 

However, performing classification with these features still presents several problems. First, the filtered 

features include noisy, irrelevant features, despite the preprocessing steps taken to identify features that 

have both intra-class similarity and inter-class dissimilarity. Second, the set of filtered features include 

those that are highly correlated and therefore are redundant. These two observations suggest the 

classification system should produce a classifier, but should also down select the incoming feature set to a 

small set of cooperative features that are amenable to classification. 

 

The following sections describe the approach used in this paper. A modified K-Nearest Neighbor (KNN) 

classifier is used as the basic classification algorithm. Feature selection is determined by the use of a 

genetic algorithm (GA) to identify a small set of features that enable the KNN to obtain good 

classification results. The GA is driven by the area under the KNN’s receiver operator characteristic curve 

(ROC curve), where the ideal ROC curve has an area of 1. The following sections describe each aspect in 

more detail. 
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2.4 Modified K-Nearest Neighbor Classifier 

 

The basic KNN is a two-class classifier that is often used in situations where the data distributions are 

generally unknown
10

. KNN training is performed by using all samples of the training data as labeled 

prototypes. Unknown samples are classified by comparing the distance of the unknown sample to the k 

nearest prototypes, where k is a small user-defined integer (e.g., 3). In binary classification (i.e., -two 

class classification), choosing an odd value for k avoids a potential tie vote. The method of computing 

distance with N-dimensional data is commonly done in two different ways: Euclidean distance and L1 

norm, or Manhattan/Minkowski distance formula using p = 2. This work uses Euclidean distance, but the 

L1 norm appeared to provide similar results. The three nearest prototypes then vote on the unknown’s 

class label. Figure 1 illustrates this process in two dimensions. In this sample, the training data contains 5 

samples, which includes 3 positive samples and 2 negative samples. The three closest samples to the 

unknown are S1, S3, and S4, with the majority those samples being positives; consequently, the unknown 

would be labeled as positive. 

 

 

Figure 1. Example data and plot of data. 
 

 

One unique objective of this work was to develop a classifier that has one or more parameters that control 

the classifier’s behavior. For example, it may be important to correctly classify positives, with an 

increased tolerance for false alarms. Conversely, it may be deemed acceptable to miss a couple positives, 

if the increased number of false alarms is kept small. The k parameter in the KNN classifier does not 

provide such a parameter. k simply denotes the number of voters and does not provide a way to 

increase/decrease the sensitivity toward the class boundaries. Further, the number of prototypes is 

typically quite small in biological studies and therefore modulating the number of voters would have 

limited utility.  

 

For an appropriately configurable classifier, a ROC curve visually illustrates the possible tradeoffs 

between the rates of true positives and false positives. Figures 2a and 2b illustrate a typical ROC curve 

and the perfect ROC curve.  Figure 2a depicts the tradeoffs of a hypothetical classifier. The figure shows 

that the classifier has a parameter that can allow it to obtain a 0.75 true positive rate, while simultaneously 

having a false alarm rate of 0.25. Should the operational situation require 0.9 rate of recognizing true 

positives, the rate of false alarms would reach a predicted level of approximately 0.75. ROC curves are 

monotonically increasing. The perfect classifier would obtain a rate of 1.0 for positives with a false alarm 

rate of 0.0. This perfect ROC curve is shown in Figure 2b. 

 



 

5 

Distribution A: Approved for public release; distribuiton is unlimited.  88ABW-2012-2243; cleared 16 April 2012 

 

Figures 2a-b. ROC Curves. Figure 2a shows a typical ROC curve. Figure 2b shows the perfect ROC 

curve. 
 

 

To provide for an adjustable parameter, the KNN’s decision rule is modified (Figure 3). Whereas, the basic KNN’s decision 

rule is to count the votes to the nearest k prototypes, the modified decision rule uses the distance value to influence its decision. 

This is approach assumes that being closer to a prototype indicates that it is more likely to be of that category. The definition 

for the modified KNN decision rule is as follows, where T is the configurable parameter and k is an integer > 0: 

 

 

Figure 3. Modified KNN pseudocode. 
 

 

The classification rule takes the ratio between the total distances to the closest positive prototypes and the closest negative 

prototypes. If the unknown happens to be a positive, it is expected that posDistance would be small and negDistance would be 

large, producing a small value for ratio. By adjusting T to a small value, the criteria for declaring “positive” becomes more 

stringent, in that the unknown’s distance from the positives must be quite small while simultaneously its distance from the 

negatives must be relatively large. Conversely, setting T to a large value allows more samples to be classified as positives. In 

the extreme case, T = infinity, all unknown samples will be classified as positives. 

 

2.5 Learning Algorithm for Feature Selection 

 

After preprocessing, the set of filtered features is sent to the classification system. As mentioned in section 2.2, the potential 

exists for reducing this set to an even smaller number. Ideally, this reduction would produce a less costly system and produce a 

subset of features that are more effective than using the entire set as a whole. The ideal subset would contain features with 

general properties such as: mutual independence, inter-class dissimilarity, and intra-class similarity. Rather than applying more 

filters to achieve this, our approach is to use the modified KNN classifier to assess the quality of a feature subset; where good 

subsets will provide good classification and poor subsets will not be very accurate. 

 

The process of selecting a subset from a large set uses a sequence of 0’s and 1’s to represent the subset. Here the bit positions 

containing a 1 or 0 indicate features to be included or excluded. Figure 4 shows a diagram illustrating how one bitstring is used 

to down-select the features and how that down-selection affects the resulting data set that is fed to the KNN learning algorithm. 

In this example, the bitstring happens to have three on-bits located at positions 2, 4, and 5, indicating that only features 2, 4, 

and 5 are used and features 1 and 3 are ignored. The down-selected data is then used to form the modified KNN. 
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Figure 4. Reduction of Training Data. The topmost figure shows the entire set of data. The middle figure 

shows one bitstring produced by the GA. The bottommost figure shows the training data without the 

excluded features. 
 

 

A GA is a natural learning algorithm to apply to this problem
11, 12

 since it operates on a bitstring. The 

reader is referred to the text by Goldberg
13

 for a more complete treatment of GAs. For our purposes, it 

suffices to say that the GA is a method for optimizing a sequence of 0’s and 1’s. In order to achieve this, 

the GA requires a method for evaluating the quality of the sequence. By assigning a numeric score to a 

sequence, and many other sequences, the GA navigates the search space to find sequences that are better 

than the ones it is currently is examining. 

 

Leave-one-out (LOO) cross validation
10, 14

 is a common method for estimating the quality of a classifier 

using only training data. LOO iterates over all the training samples, where each sample is temporarily 

removed from the training set. This smaller set is then used to train the classifier, which is then applied to 

the sample that was held out. Ideally, the classifier will correctly classify the sample. By repeating this 

process over all training samples, it is possible to assess the generality of the learning technique. If the 

LOO algorithm shows solid performance over a large percentage of the samples, it can be assumed that 

the learning technique generalizes to truly unknown samples. 

 

On each iteration of the LOO algorithm, the bitstring in question ultimately results in a KNN that is used 

to classify the sample temporarily removed. Instead of classifying the sample, the ratio between 

posDistance and negDistance is recorded. The set of ratios can be used to create a ROC curve that 

predicts the final system’s ROC curve, where the final system refers to the modified KNN that is obtained 

by using all of the training data. The area under the predicted ROC curve is used as the bitstring’s 

evaluation score. Naturally, a score of 1 corresponds to a perfect ROC curve, which indicates that the 

feature set forms an effective KNN classifier. 
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3.0 EXPERIMENTAL DESIGN 

 

3.1 Materials / Methods 

 

Animal use in this study was conducted in accordance with the principles stated in the Guide for the Care 

and Use of Laboratory Animals, National Research Council, 1996, and the Animal Welfare Act of 1966, 

as amended. BXD mice parental strains (DBA and C57) utilized for this study were singly housed in 

metabolic cages which are approximately 9 cm in diameter and urine and feces were separated and 

isolated. Individual mouse urine samples were collected using 1 mL disposable transfer pipettes (Thermo 

Fisher Scientific) and placed in 2 mL Eppendorf Snap-Cap Microcentrifuge Safe-Lock tubes. The urine 

was then stored frozen at -80°C and thawed on ice prior to analysis. For the BXD VOC baseline set 

described, 170 individual samples representing the two parental strains (C57 N = 81, DBA N = 89), and 

six additional test samples (C57 N = 3, DBA N = 3) were processed by aliquoting 200 uL of urine into a 

10 ml crimp-top headspace vial (National Scientific). The vials were immediately crimped with Red 

PTFE/white silicone crimp seals (Fisher). The bench-top GC/MS system utilized for sample analysis was 

a Thermo Fisher Trace GC Ultra gas chromatograph interfaced to a Thermo Triplus autosampler 

configured for automated SPME headspace sampling and in-line with a Thermo DSQII single quadrupole 

mass spectrometer. Collection of organic volatiles from the urine was accomplished using a 2cm 

CAR/DVB/PDMS solid phase micro extraction fiber (SPME), Supelco supplier, inserted by the Triplus 

autosampler into the head-space of the sample vials. The headspace samples were incubated at 60°C for 

15 minutes, followed by extraction at 60°C for 30 minutes and automated direct injection. Volatiles 

gathered by the SPME fiber were analyzed through desorption of the fiber by heating to elevated 

temperature and separation with a Restek Stabilwax 30m, 0.25mm ID column. Helium was used as the 

carrier gas at a flow-rate of 1.5 ml/min. A narrow bore SPME injector liner (0.75 mm I.D.) was used 

(Thermo). The following conditions were utilized for sample analysis: desorption for 2 min via a PTV 

injector held at 230°C; oven temperature program 50°C (4 min); 5°C/min to 230°C; hold 30 minutes 

giving a total run time of 70 minutes. The DSQII MS transfer line was held at 230°C and the instrument 

was operated in positive scan mode from 41 to 400 amu. The raw data was collected in centroid mode and 

the resulting chromatograms and mass spectra (raw files) were then converted to CDF format and 

subsequently analyzed through MeDDL. Due to the fact that SPME extraction is a competitive process 

leading to mutual displacement from the adsorption sites between different analytes or analytes and 

matrix constituents, the results of this study as described report data semi-quantitatively based on relative 

peak heights.  

 

3.2 Results 

 

A total of 170 BXD parental urine samples (DBA and C57 “teaching set”) were collected and analyzed 

over a four month period with the six unregistered “unknown”, test samples utilized below acquired over 

12 months later. Following GC/MS analysis, CDF conversion, and MeDDL registration, the samples in 

the “teaching set” were filtered for a 2-fold change and time binned (0.1 min window, 100K absolute 

threshold minimum cutoff). The filter results are shown in Table 1, with peakset 1 comprising all 

registered peaks, peakset 2 comprising time binning, peakset 3 comprising fold change, and peakset 4 the 

resultant intersection of the two applied filters.  
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Table 1. BXD parental strain peak registration and peakset (PkSet) filter results. 

 

 
 

 

This subset of 52 VOC features, or peaks, were first screen by PCA (Figure 5) to demonstrate group 

separation prior to analysis by the hybrid GA classifier. Principal component analysis is a mathematical 

procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated 

variables into a set of values of linearly uncorrelated variables called principal components.  This 

technique is often difficult in usage to identify the individual subset of features responsible for group 

separation, but is quite useful as a screening technique as shown below.  

 

 

Figure 5. PCA of C57 and DBA filtered intersect (peakset 4) results. 
 

 

MeDDL offers users the ability to utilize several different types of classification methods and separately 

store the resulting output for classification of additional, unregistered unknowns. These methods use a 

combination of pre-coded Matlab classifiers, Waikato Environment for Knowledge Analysis (WEKA) 

classifiers, and the novel, in-house developed hybrid GA classifier, implemented in Java and Matlab, 

described in this study (Figure 6). The internal data classification allows users to teach the classifiers from 

peak sets generated using the tool. The external data classification is currently designed to process both 

CDF format files and comma separated value files (.CSV). All classification methods support classifying 

intensities or ratios of intensities though application of appropriate data filters.  
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Figure 6. MeDDL tool machine learning implementation and GA settings. 

 

 

In testing the hybrid GA for this study (Figure 7), setting k = 2, minimum features = 4, and maximum 

features = 10 provided both perfect classification of C57 versus DBA for both the 170 teaching samples 

as well as the 6 “unknown” external samples. Reverse classification (DBA versus C57) using these same 

settings resulted in 2 mis-classifications of the “unknowns” illustrating the need to optimize the GA 

settings for each classifier result.  

 

 

Figure 7. Hybrid GA results. Vertical line is user adjustable slider to determine T threshold values. 

 

 

Results of the hybrid GA classifier were comprised of 10 VOC “features”, which is the maximum features 

size allowed by the GA settings. An example of one of the selected VOCs is shown in Figure 8. In an 

focused biomarker study, each resultant peak would then be preliminarily identified through comparison 

to the National Institute of Standards and Technologies (NIST) 08 database and Wiley libraries and 

verified though expert, manual spectral analysis and comparison with purchased standards. 
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Figure 8. Boxplot of hybrid GA VOC feature output selected by classifier.  
 

 

4.0 CONCLUSION 

 

Given the unique requirements for large-scale, LC/MS and GC/MS based biomarker studies and currently 

available software limitations, a logically designed and successfully implemented comprehensive tool for 

time-series spectral registration, spectral and chromatographic alignment, visualization, and comparative 

analysis facilitates and allows the efficient and methodical analysis of multiple, large-scale biomarker 

discovery studies. The MeDDL platform has been markedly improved from the original version and 

greatly streamlines the analysis of multi-group comparisons through the addition of a more intuitive 

interface, the ability to dynamically alter group definitions and group comparative displays, and the 

creation of definable, group comparative graphics. Through a combination of the base MeDDL 

registration and alignment algorithms and the described additional functionality, MeDDL now offers the 

analytical chemist the potential for visualizing data in new ways, providing novel insight into the 

experimental results, and expediting LC/MS and GC/MS based biomarker discovery. Modifications to the 

current implementation of the tool are on-going, with automated iteration across available “unknowns” for 

optimization of the hybrid GA parameter settings planned. A compiled version of MeDDL is provided 

free of charge to all interested parties and is available at the following URL along with a Wiki 

(http://meddl.cs.wright.edu/) covering many of the features described above. 
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